skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Ma, Ke"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The integration of onboard computing capabilities with unmanned aerial vehicles (UAV) has gained significant attention in recent years as part of mobile computing paradigms such as mobile edge computing (MEC), fog computing, and mobile cloud computing. To enhance the performance of airborne computing, networked airborne computing (NAC) aims to interconnect UAVs through direct flight-to-flight links, with UAVs sharing resources with each other. However, despite the growing interest in NAC and UAV-based computing, existing studies rely heavily on numerical simulations for performance evaluation and lack realistic simulators and hardware testbeds. To fill this gap, this paper presents the development of two NAC platforms: a realistic simulator based on ROS and Gazebo, and a hardware testbed with multiple UAVs communicating and sharing computing resources. Through simulation and real flight tests with two computation applications, we evaluate the platforms and examine the impact of mobility on NAC performance. Our findings offer valuable insights into NAC and provide guidance for future advancements. 
    more » « less